
Vishay Siliconix

P-Channel 20 V (D-S) MOSFET

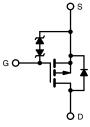
PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω) Max.	I _D (A) a, d	Q _g (Typ.)			
-20	0.0080 at V _{GS} = -4.5 V	-16.7				
	0.0086 at V _{GS} = -3.7 V	-16.1	70 nC			
	0.0110 at V _{GS} = -2.5 V	-14.2	70110			
	0.0185 at V _{GS} = -1.8 V	-11				

Power MICRO FOOT® 2.4 x 2

Ordering Information:

Si8851EDB-T2-E1 (Lead (Pb)-free and halogen-free)

FEATURES


- TrenchFET® power MOSFET
- Small 2.4 mm x 2 mm outline area
- Low 0.4 mm max. profile
- Typical ESD protection 6000 V HBM
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

COMPLIANT

HALOGEN FREE

APPLICATIONS

- · Battery switch / load switch
- · Power management
- · For smart phones, tablet PCs, and mobile computing

P-Channel MOSFET

PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	-20		
Gate-Source Voltage		V _{GS}	± 8	V	
	T _A = 25 °C		-16.7 ^a		
Continuous Drain Current /T 150 °C\	T _A = 70 °C		-13.4 ^a		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	-7.7 b		
	T _A = 70 °C		-6.2 b	А	
Pulsed Drain Current (t = 100 μs)		I _{DM}	I _{DM} -80		
Outline and Outline David Divide Outline	T _C = 25 °C		-2.6 ^a		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	-0.55 ^b		
	T _A = 25 °C		3.1 ^a		
Maying Payar Dissinction	T _A = 70 °C	Б.	2 a	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	0.66 b	VV	
	T _A = 70 °C		0.43 b		
Operating Junction and Storage Temperature F	T _J , T _{stg}	-55 to +150			
Deckare Deflow Conditions 6	VPR		260	°C	
Package Reflow Conditions ^c	IR/Convection		260		

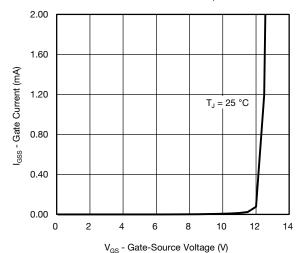
Notes

- a. Surface mounted on 1" x 1" FR4 board with full copper, t=5 s. b. Surface mounted on 1" x 1" FR4 board with minimum copper, t=5 s.
- c. Refer to IPC/JEDEC® (J-STD-020), no manual or hand soldering.
- d. Based on $T_A = 25$ °C.

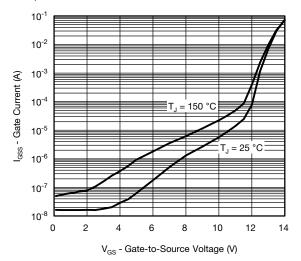
THERMAL RESISTANCE RATINGS							
PARAMETER	SYMBOL	Typical	Maximum	Unit			
Maximum Junction-to-Ambient a, b	t = 5 s	В	30	40	°C/W		
Maximum Junction-to-Ambient c, d	t = 5 s	- R _{thJA}	145	188	C/VV		

- a. Surface mounted on 1" x 1" FR4 board with full copper.
- b. Maximum under steady state conditions is 85 °C/W.
- Surface mounted on 1" x 1" FR4 board with minimum copper.
- d. Maximum under steady state conditions is 330 °C/W.

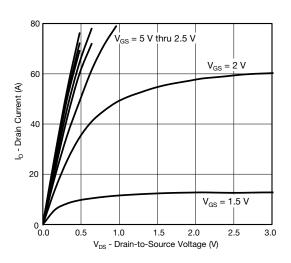
Vishay Siliconix

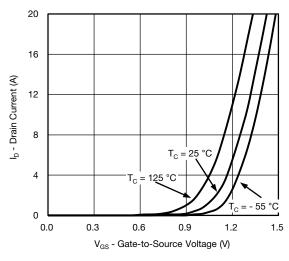

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static							
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20	-	-	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$		-	-11	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	-	3	-		
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.45	-	-1	V	
0.00	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$	-	-	± 0.5	μА	
Gate-Source Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$	-	-	± 10		
Zero Osto Vellano Burio Osmat	I _{DSS}	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1		
Zero Gate Voltage Drain Current		$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 70 \text{ °C}$	-	-	-10	0	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-5	-	-	Α	
		$V_{GS} = -4.5 \text{ V}, I_D = -7 \text{ A}$	-	0.0060	0.0080	Ω	
Drain Cauras On State Besistance	n	$V_{GS} = -3.7 \text{ V}, I_D = -7 \text{ A}$	-	0.0065	0.0086		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -5 \text{ A}$	-	0.0081	0.0110		
		$V_{GS} = -1.8 \text{ V}, I_D = -3 \text{ A}$	-	0.0130	0.0185		
Forward Transconductance a	9 _{fs}	$V_{DS} = -10 \text{ V}, I_D = -7 \text{ A}$	-	50	-	S	
Dynamic ^b	<u> </u>			1			
Input Capacitance	C _{iss}		-	6900	-	pF	
Output Capacitance	C _{oss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	640	-		
Reverse Transfer Capacitance	C _{rss}		-	715	-		
Total Gate Charge	Q _g	$V_{DS} = -10 \text{ V}, V_{GS} = -8 \text{ V}, I_D = -5 \text{ A}$	-	120	180	nC	
Total Gate Charge			-	70	105		
Gate-Source Charge	Q_{gs}	V_{DS} = -10 V, V_{GS} = -4.5 V, I_D = -5 A	-	8	-		
Gate-Drain Charge	Q_{gd}		-	14	-		
Gate Resistance	R_g	V _{GS} = -0.1 V, f = 1 MHz	-	2.3	-	Ω	
Turn-On Delay Time	t _{d(on)}		-	35	70		
Rise Time	t _r	V_{DD} = -10 V, R_L = 2 Ω	-	40	80		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -5 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$		115	230		
Fall Time	t _f		-	35	70	ns	
Turn-On Delay Time	t _{d(on)}		-	15	30		
Rise Time	t _r	V_{DD} = -10 V, R_L = 2 Ω	-	10	20		
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ -5 A, $V_{GEN}=$ -8 V, $R_g=$ 1 Ω	-	110	220		
Fall Time	t _f		-	25	50		
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	T _A = 25 °C	-	-	-2.6	A	
Pulse Diode Forward Current (t = 100 μs)	I _{SM}		-	-	-80		
Body Diode Voltage	V_{SD}	$I_S = -5 \text{ A}, V_{GS} = 0 \text{ V}$	-	-0.8	-1.2	V	
Body Diode Reverse Recovery Time	t _{rr}		-	40	80	ns	
Body Diode Reverse Recovery Charge Q _{rr}		$I_F = -5 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s},$	-	30	60	nC	
Reverse Recovery Fall Time	ta	$T_J = 25 ^{\circ}C$	-	16	-	ns	
Reverse Recovery Rise Time	t _b		-	24	-		

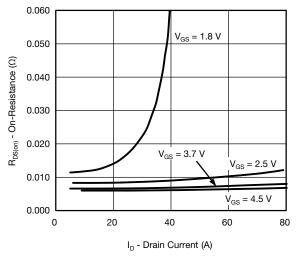
Notes

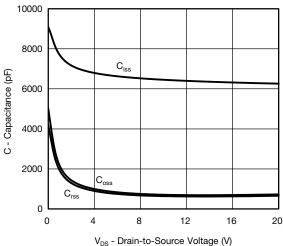

- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

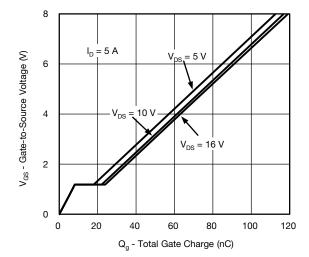



Gate Current vs. Gate-Source Voltage

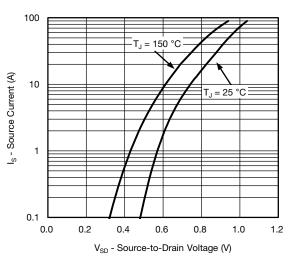

Gate Current vs. Gate-Source Voltage


Output Characteristics

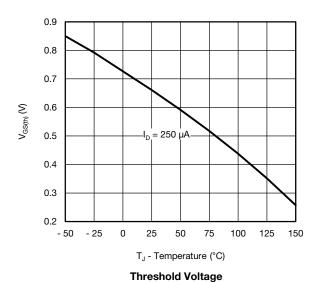
Transfer Characteristics



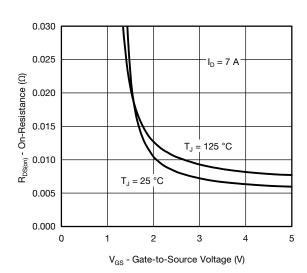
On-Resistance vs. Drain Current and Gate Voltage



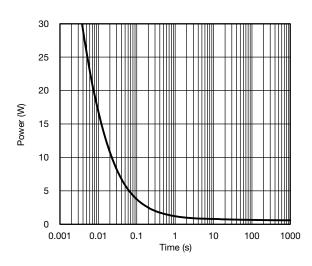
Capacitance



Gate Charge

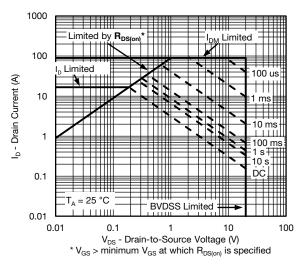


Source-Drain Diode Forward Voltage

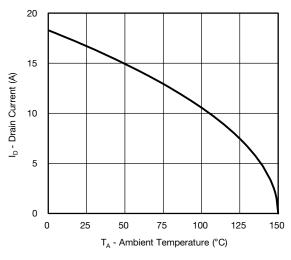


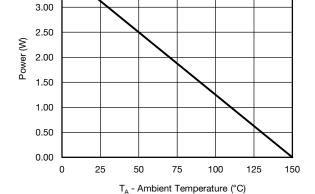
R_{DS(on)} - On-Resistance (Normalized) 1.3 $= 2.5 \text{ V}, I_D = 5 \text{ A}$ 1.2 1.1 $V_{GS} = 1.8 \text{ V}, I_{D} = 5 \text{ A}$ 1.0 0.9 0.8 0.7 50 - 25 0 75 100 150 T₁ - Junction Temperature (°C)

On-Resistance vs. Junction Temperature



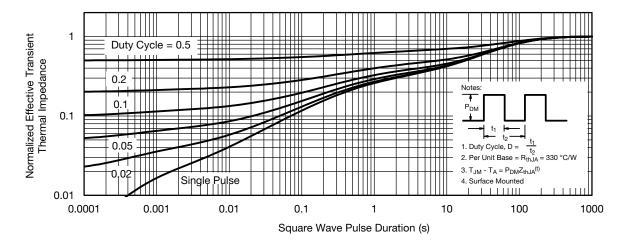
On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power, Junction-to-Ambient

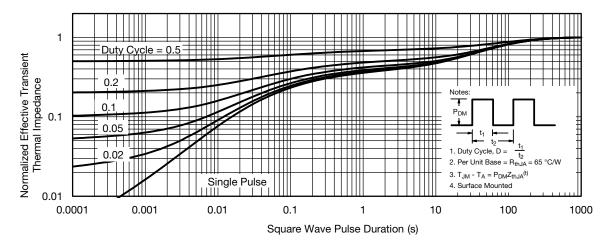


Safe Operating Area, Junction-to-Ambienta

4.00 3.50

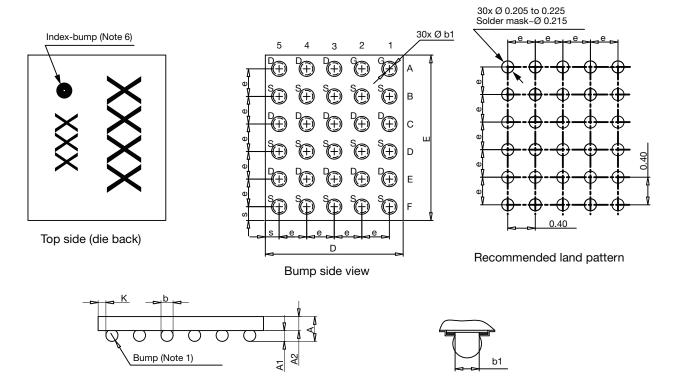

Power Derating^a

Current Derating a


Note

a. When mounted on 1" x 1" FR4 with full copper and t = 5 s

Normalized Thermal Transient Impedance, Junction-to-Ambient (on 1" x 1" FR4 Board with minimum Copper)



Normalized Thermal Transient Impedance, Junction-to-Ambient (on 1" x 1" FR4 Board with maximum Copper)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?64197.

Vishay Siliconix

MICRO FOOT®: 30-Bumps (2.4 mm x 2 mm, 0.4 mm Pitch, 0.184 mm Bump Height)

Notes

- 1. Bumps are 95.5/3.8/0.7 Sn/Ag/Cu.
- 2. Backside surface is coated with a Ti/Ni/Ag layer.
- 3. Non-solder mask defined copper landing pad.
- 4. Laser marks on the silicon die back.
- 5. "b1" is the diameter of the solderable substrate surface, defined by an opening in the solder resist layer solder mask defined.
- 6. is the location of pin 1

DIM.	MILLIMETERS			INCHES				
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.328	0.365	0.402	0.0129	0.0144	0.0158		
A1	0.136	0.160	0.184	0.0054	0.0063	0.0072		
A2	0.192	0.205	0.218	0.0076	0.0081	0.0086		
b	0.200	0.220	0.240	0.0079	0.0087	0.0094		
b1		0.175			0.0069			
е	0.400			0.0157				
S	0.160	0.180	0.200	0.0063	0.0071	0.0079		
D	1.920	1.960	2.000	0.0756	0.0772	0.0787		
E	2.320	2.360	2.400	0.0913	0.0929	0.0945		
K	0.040	0.070	0.100	0.0016	0.0028	0.0039		

Note

• Use millimeters as the primary measurement.

ECN: T15-0177-Rev. A, 27-Apr-15 DWG: 6040

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.